
Opći spoj (za sve zadatke)

• LED: anoda → otpornik 220–330 Ω → D8 (ili neki drugi izvod po želji),

katoda → GND

• Tipkalo: jedan kraj → D2 (ili neki drugi izvod po želji), drugi kraj → GND

U kodu koristimo: pinMode(D2, INPUT_PULLUP); (tipkalo aktivno na LOW, kada se

pritisne)

Zadatak 1: LED svijetli dok držimo tipkalo (osnovno)

Opis:

LED je ugašena. Kad pritisnemo tipkalo, LED svijetli. Kad pustimo, LED se gasi.

Spoj:

• LED + otpornik 220–330 Ω na D8 (anoda na D8 preko otpornika, katoda na

GND)

• Tipkalo na D2 i GND (koristimo INPUT_PULLUP)

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP); // tipkalo na GND

}

void loop() {

 bool pressed = (digitalRead(BTN_PIN) == LOW); // aktivno na LOW

 digitalWrite(LED_PIN, pressed ? HIGH : LOW);

}

Što je bouncing (odbijanje kontakta), zašto dolazi do toga i kako se rješava?

Mehaničko tipkalo nije idealni prekidač.

Kad ga pritisnemo ili pustimo, njegovi metalni kontakti ne spoje se trenutno i čisto,

nego:

• kratko poskakuju i dodiruju jedan drugog

• tijekom nekoliko milisekundi naprave niz vrlo brzih uključenja i isključenja

Mikrokontroler radi puno brže od mehanike tipkala i te kratke promjene vidi kao:

više uzastopnih pritisaka, iako je tipkalo pritisnuto samo jednom.

➔ To se naziva contact bounce (odbijanje kontakta).

Kako se problem rješava? (debouncing)

Postoje dva osnovna pristupa:

1. Programsko rješenje (najčešće u nastavi)

Nakon promjene stanja tipkala:

• pričeka se kratko vrijeme (npr. 20–50 ms)

• tek ako je stanje i dalje isto, smatra se valjanim pritiskom

➔ Na taj se način ignoriraju brze, neželjene promjene.

Prednosti:

• nema dodatnih komponenti

• lako razumljivo

• idealno za učenje

2. Hardversko rješenje (rjeđe u osnovnoj nastavi)

• koristi se RC sklop (otpornik + kondenzator)

• ili Schmitt-trigger ulaz

➔ Električki “izravna” signal prije nego dođe do mikrokontrolera.

Nedostatak:

• dodatne komponente

• složenije za početnike

Jedna rečenica za učenike
Tipkalo ne mijenja stanje trenutno, nego kratko “poskakuje”, a mikrokontroler je toliko

brz da to vidi kao više pritisaka, pa zato koristimo debouncing.

Zadatak 2: Tipkalo pali/gasi LED (toggle) – s debounce

Opis:

Svaki pritisak tipkala promijeni stanje LED (ON→OFF, OFF→ON). Treba spriječiti

“dvostruko okidanje” zbog odbijanja kontakta (debounce).

Spoj: isto kao Zadatak 1.

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

bool ledState = false;

bool lastBtn = HIGH;

unsigned long lastDebounceTime = 0;

const unsigned long debounceMs = 30;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP);

 digitalWrite(LED_PIN, LOW);

}

void loop() {

 bool btn = digitalRead(BTN_PIN);

 // detekcija promjene

 if (btn != lastBtn) {

 lastDebounceTime = millis();

 lastBtn = btn;

 }

 // stabilno stanje nakon debounce vremena

 if ((millis() - lastDebounceTime) > debounceMs) {

 static bool lastStable = HIGH;

 if (btn != lastStable) {

 lastStable = btn;

 // okidaj na pritisak (HIGH -> LOW)

 if (lastStable == LOW) {

 ledState = !ledState;

 digitalWrite(LED_PIN, ledState ? HIGH : LOW);

 }

 }

 }

}

Zadatak 3: Kratki pritisak = toggle, dugi pritisak (≥1 s) = LED blink (2

Hz)

Opis:

• Kratki pritisak: LED se pali/gasi (toggle)

• Dugi pritisak: LED prelazi u režim treptanja 2 Hz (svakih 250 ms mijenja stanje)

• Ponovni kratki pritisak izlazi iz blink moda i vraća toggle režim

Spoj: isto.

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

bool ledState = false;

bool blinkMode = false;

bool lastBtn = HIGH;

unsigned long pressStart = 0;

unsigned long lastBlink = 0;

const unsigned long blinkInterval = 250; // 2 Hz (ON/OFF svakih 250ms)

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP);

 digitalWrite(LED_PIN, LOW);

}

void loop() {

 bool btn = digitalRead(BTN_PIN);

 // pritisak detektiran

 if (lastBtn == HIGH && btn == LOW) {

 pressStart = millis();

 }

 // puštanje detektirano

 if (lastBtn == LOW && btn == HIGH) {

 unsigned long pressDur = millis() - pressStart;

 if (pressDur >= 1000) {

 blinkMode = true; // dugi pritisak -> blink

 lastBlink = millis();

 } else {

 // kratki pritisak

 if (blinkMode) {

 blinkMode = false; // izlaz iz blink moda

 ledState = false; // po želji reset stanja

 digitalWrite(LED_PIN, LOW);

 } else {

 ledState = !ledState; // toggle

 digitalWrite(LED_PIN, ledState ? HIGH : LOW);

 }

 }

 }

 lastBtn = btn;

 // blink režim bez delay-a

 if (blinkMode) {

 if (millis() - lastBlink >= blinkInterval) {

 lastBlink = millis();

 ledState = !ledState;

 digitalWrite(LED_PIN, ledState ? HIGH : LOW);

 }

 }

}

ZADATAK 3: Brojač pritisaka (kratki pritisak), ispis na Serial

Opis:

Svaki kratki pritisak tipkala povećava brojač. LED se upali na 200 ms kao potvrda. Broj

se ispiše na Serial.

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

unsigned long lastChange = 0;

const unsigned long debounceMs = 30;

bool lastRead = HIGH;

bool stableBtn = HIGH;

unsigned long ledUntil = 0;

unsigned long countPress = 0;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP);

 Serial.begin(9600);

}

void loop() {

 bool reading = digitalRead(BTN_PIN);

 if (reading != lastRead) {

 lastRead = reading;

 lastChange = millis();

 }

 if (millis() - lastChange > debounceMs) {

 if (reading != stableBtn) {

 stableBtn = reading;

 // okidaj na pritisak

 if (stableBtn == LOW) {

 countPress++;

 Serial.print("Broj pritisaka: ");

 Serial.println(countPress);

 ledUntil = millis() + 200;

 }

 }

 }

 digitalWrite(LED_PIN, (millis() < ledUntil) ? HIGH : LOW);

}

ZADATAK 4: Dvostruki klik (double-click) = promjena režima

Opis:

• Jedan klik: LED toggle (ON/OFF)

• Dvostruki klik unutar 350 ms: LED ide u “blink” režim (2 Hz)

• Sljedeći jedan klik: izlaz iz blink režima i toggle

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

const unsigned long debounceMs = 30;

const unsigned long doubleClickMs = 350;

const unsigned long blinkInterval = 250; // 2 Hz

bool lastRead = HIGH, stableBtn = HIGH;

unsigned long lastChange = 0;

bool ledState = false;

bool blinkMode = false;

unsigned long lastBlink = 0;

int clickCount = 0;

unsigned long firstClickTime = 0;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP);

}

void handleSingleClick() {

 if (blinkMode) {

 blinkMode = false;

 ledState = false;

 digitalWrite(LED_PIN, LOW);

 } else {

 ledState = !ledState;

 digitalWrite(LED_PIN, ledState ? HIGH : LOW);

 }

}

void handleDoubleClick() {

 blinkMode = true;

 lastBlink = millis();

}

void loop() {

 // debounce + edge

 bool reading = digitalRead(BTN_PIN);

 if (reading != lastRead) {

 lastRead = reading;

 lastChange = millis();

 }

 if (millis() - lastChange > debounceMs) {

 if (reading != stableBtn) {

 stableBtn = reading;

 if (stableBtn == LOW) { // click

 clickCount++;

 if (clickCount == 1) firstClickTime = millis();

 }

 }

 }

 // obrada single/double klika

 if (clickCount == 1 && (millis() - firstClickTime) > doubleClickMs) {

 handleSingleClick();

 clickCount = 0;

 } else if (clickCount >= 2) {

 handleDoubleClick();

 clickCount = 0;

 }

 // blink mode

 if (blinkMode) {

 if (millis() - lastBlink >= blinkInterval) {

 lastBlink = millis();

 ledState = !ledState;

 digitalWrite(LED_PIN, ledState ? HIGH : LOW);

 }

 }

}

ZADATAK 5: Morse s tipkalom (kratko = točka, dugo = crta), LED

pokazuje unos

Opis:

• Držiš tipkalo: mjeri trajanje

• Pustiš tipkalo:

o < 300 ms = točka

o ≥ 300 ms = crta

• LED potvrđuje:

o točka: kratko bljesne 100 ms

o crta: duže bljesne 300 ms

• Ispiši “.” ili “-” na Serial

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

const unsigned long debounceMs = 30;

const unsigned long dotThreshold = 300;

bool lastRead = HIGH, stableBtn = HIGH;

unsigned long lastChange = 0;

unsigned long pressStart = 0;

unsigned long ledUntil = 0;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP);

 Serial.begin(9600);

}

void loop() {

 bool reading = digitalRead(BTN_PIN);

 if (reading != lastRead) {

 lastRead = reading;

 lastChange = millis();

 }

 if (millis() - lastChange > debounceMs) {

 if (reading != stableBtn) {

 stableBtn = reading;

 if (stableBtn == LOW) {

 pressStart = millis();

 } else { // released

 unsigned long dur = millis() - pressStart;

 if (dur < dotThreshold) {

 Serial.print(".");

 ledUntil = millis() + 100;

 } else {

 Serial.print("-");

 ledUntil = millis() + 300;

 }

 }

 }

 }

 digitalWrite(LED_PIN, (millis() < ledUntil) ? HIGH : LOW);

}

ZADATAK 6: “Sigurnosni start” – drži tipkalo 2 s da se LED uopće

aktivira

Opis:

Dok ne držiš tipkalo 2 sekunde u komadu, LED ignorira klikove. Nakon

“otključavanja” radi normalni toggle.

Rješenje (kod)

const int LED_PIN = 8;

const int BTN_PIN = 2;

const unsigned long debounceMs = 30;

const unsigned long unlockMs = 2000;

bool lastRead = HIGH, stableBtn = HIGH;

unsigned long lastChange = 0;

bool unlocked = false;

unsigned long pressStart = 0;

bool ledState = false;

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(BTN_PIN, INPUT_PULLUP);

}

void loop() {

 bool reading = digitalRead(BTN_PIN);

 if (reading != lastRead) {

 lastRead = reading;

 lastChange = millis();

 }

 if (millis() - lastChange > debounceMs) {

 if (reading != stableBtn) {

 stableBtn = reading;

 if (stableBtn == LOW) {

 pressStart = millis();

 } else { // release

 if (!unlocked) {

 // ništa

 } else {

 ledState = !ledState;

 digitalWrite(LED_PIN, ledState ? HIGH : LOW);

 }

 }

 }

 }

 // unlock check (dok je tipkalo stisnuto)

 if (!unlocked && stableBtn == LOW) {

 if (millis() - pressStart >= unlockMs) {

 unlocked = true;

 // signal: tri brza bljeska

 // (bez delay-a: jednostavno kratko upali pa ugasi nakon 150ms,

ponovi u idućoj verziji ako želiš)

 ledState = true;

 digitalWrite(LED_PIN, HIGH);

 }

 }

 // nakon unlock-a vrati LED u OFF (da se vidi da sad radi toggle)

 if (unlocked && ledState == true && stableBtn == HIGH) {

 ledState = false;

 digitalWrite(LED_PIN, LOW);

 }

}

